

ftw.testbrowser

ftw.testbrowser is a browser library for testing Plone [http://www.plone.org/] based web sites and
applications.

	Introduction
	Features

	Motivation

	How it works

	Quickstart

	User documentation
	Setup

	Visit pages

	Logging in

	Finding elements

	Matching text content

	Get the page contents / json data

	Filling and submitting forms

	Tables

	Page objects

	XML Support

	WebDAV requests

	Error handling

	API Documentation
	Browser

	Nodes and forms

	Page objects

	Exceptions

	Changelog
	1.24.0 (2017-06-16)

	1.23.2 (2017-06-16)

	1.23.1 (2017-05-02)

	1.23.0 (2017-04-28)

	1.22.2 (2017-04-28)

	1.22.1 (2017-04-28)

	1.22.0 (2017-04-28)

	1.21.0 (2017-04-19)

	1.20.0 (2017-04-10)

	1.19.3 (2016-07-25)

	1.19.2 (2016-06-27)

	1.19.1 (2015-08-20)

	1.19.0 (2015-07-31)

	1.18.1 (2015-07-23)

	1.18.0 (2015-07-22)

	1.17.0 (2015-07-22)

	1.16.1 (2015-07-13)

	1.16.0 (2015-07-08)

	1.15.0 (2015-05-07)

	1.14.6 (2015-04-17)

	1.14.5 (2015-01-30)

	1.14.4 (2014-10-03)

	1.14.3 (2014-10-02)

	1.14.2 (2014-09-29)

	1.14.1 (2014-09-26)

	1.14.0 (2014-09-26)

	1.13.4 (2014-09-22)

	1.13.3 (2014-09-02)

	1.13.2 (2014-08-06)

	1.13.1 (2014-07-15)

	1.13.0 (2014-06-12)

	1.12.4 (2014-05-30)

	1.12.3 (2014-05-30)

	1.12.2 (2014-05-29)

	1.12.1 (2014-05-29)

	1.12.0 (2014-05-29)

	1.11.4 (2014-05-22)

	1.11.3 (2014-05-19)

	1.11.2 (2014-05-17)

	1.11.1 (2014-05-17)

	1.11.0 (2014-05-14)

	1.10.0 (2014-03-19)

	1.9.0 (2014-03-18)

	1.8.0 (2014-03-04)

	1.7.3 (2014-02-28)

	1.7.2 (2014-02-25)

	1.7.0 (2014-02-03)

	1.6.1 (2014-01-31)

	1.6.0 (2014-01-29)

	1.5.3 (2014-01-28)

	1.5.2 (2014-01-17)

	1.5.1 (2014-01-07)

	1.5.0 (2014-01-03)

	1.4.0 (2013-12-27)

	1.3.0 (2013-12-11)

	1.2.0 (2013-11-24)

	1.1.0 (2013-11-07)

	1.0.2 (2013-10-31)

	1.0.1 (2013-10-31)

	1.0.0 (2013-10-28)

Links

	Source code on github: https://github.com/4teamwork/ftw.testbrowser

	Releases on pypi: https://pypi.python.org/pypi/ftw.testbrowser

	Issues on github: https://github.com/4teamwork/ftw.testbrowser/issues

	Continuous integration: https://jenkins.4teamwork.ch/search?q=ftw.testbrowser

Indices and tables

	Index

	Module Index

	Search Page

Introduction

	Features

	Motivation

	How it works

ftw.testbrowser is a browser library for testing Plone [http://www.plone.org/] based web sites
and applications (CI).

Features

The test browser supports all the basic features:

	Visit pages of the Plone site

	Access page content

	Find nodes by CSS- and XPath-Expressions or by text

	Click on links

	Fill and submit forms

	File uploading

	Make WebDAV requests

The ftw.testbrowser also comes with some basic Plone
page objects [http://martinfowler.com/bliki/PageObject.html].

ftw.testbrowser currently does not support JavaScript.

Motivation

A test browser should have a simple but powerful API (CSS expressions), it should
be fast, reliable and easy to setup and use.

The existing test browsers for Plone development were not satisfactory:

	The zope.testbrowser [https://pypi.python.org/pypi/zope.testbrowser], which
is the current standard for Plone testing does not support CSS- or XPath-Selectors,
it is very limiting in form filling (buttons without names are not selectable, for
example) and it leads to brittle tests.

	The splinter [https://pypi.python.org/pypi/splinter] test browser has a zope
driver and various selenium based drivers. This abstraction improves the
API but it is still limiting since it bases on zope.testbrowser.

	The robotframework [https://pypi.python.org/pypi/robotframework] is a selenium
based full-stack browser which comes with an own language and requires a huge setup.
The use of selenium makes it slow and brittle and a new language needs to be learned.

There are also some more browser libraries and wrappers, usually around selenium, which
often requires to open a port and make actual requests. This behavior is very time
consuming and should not be done unless really necessary, which is usally for visual
things (making screenshots) and JavaScript testing.

How it works

The ftw.testbrowser uses mechanize [https://pypi.python.org/pypi/mechanize] with plone.testing [https://pypi.python.org/pypi/plone.testing] configurations / patches
to directly dispatch requests in Zope.

The responses are parsed in an lxml [http://lxml.de/].html document, which allows us to do all the
necessary things such as selecting HTML elements or filling forms.

While querying, ftw.testbrowser wraps all the HTML elements into node wrappers which
extend the lxml functionality with things such as using CSS selectors directly,
clicking on links or filling forms based on labels.

Quickstart

Add ftw.testbrowser to your testing dependencies in your setup.py:

tests_require = [
 'ftw.testbrowser',
]

setup(name='my.package',
 install_requires=['Plone'],
 tests_require=tests_require,
 extras_require=dict(tests=tests_require))

Write tests using the browser:

from ftw.testbrowser import browsing
from ftw.testbrowser.pages import factoriesmenu
from ftw.testbrowser.pages import plone
from ftw.testbrowser.pages import statusmessages
from plone.app.testing import PLONE_FUNCTIONAL_TESTING
from plone.app.testing import SITE_OWNER_NAME
from unittest2 import TestCase

class TestFolders(TestCase):

 layer = PLONE_FUNCTIONAL_TESTING

 @browsing
 def test_add_folder(self, browser):
 browser.login(SITE_OWNER_NAME).open()
 factoriesmenu.add('Folder')
 browser.fill({'Title': 'The Folder'}).submit()

 statusmessages.assert_no_error_messages()
 self.assertEquals('folder_listing', plone.view())
 self.assertEquals('The Folder', plone.first_heading())

User documentation

	Setup
	Choosing the default driver

	Visit pages

	Logging in

	Finding elements

	Matching text content

	Get the page contents / json data

	Filling and submitting forms
	File uploading

	Tables

	Page objects

	XML Support

	WebDAV requests

	Error handling
	Disabling HTTP exceptions

	Expecting HTTP exceptions

	Expecting unauthoirzed exceptions (Plone)

	Exception bubbling

Setup

For using the test browser, just decorate your test methods with the @browsing
decorator.

from ftw.testbrowser import browsing
from unittest2 import TestCase
from plone.app.testing import PLONE_FUNCTIONAL_TESTING

class TestMyView(TestCase):

 layer = PLONE_FUNCTIONAL_TESTING

 @browsing
 def test_view_displays_things(self, browser):
 browser.visit(view='my_view')

Warning

Make sure that you use a functional testing layer!

See also

ftw.testbrowser.browsing()

By default there is only one, global browser, but it is also possible to instantiate
a new browser and to set it up manually:

from ftw.testbrowser.core import Browser

browser = Browser()
app = zope_app

with browser(app):
 browser.open()

Warning

Page objects and forms usually use the global browser. Creating a new
browser manually will not set it as global browser and page objects / forms will
not be able to access it!

Choosing the default driver

The default driver is chosen automatically, depending on whether the browser is
set up with a zope app (=> LIB_MECHANIZE) or not (=> LIB_REQUESTS).
The default driver can be changed on the browser instance, overriding the
automatic driver selection:

from ftw.testbrowser.core import Browser
from ftw.testbrowser.core import LIB_MECHANIZE
from ftw.testbrowser.core import LIB_REQUESTS
from ftw.testbrowser.core import LIB_TRAVERSAL

browser = Browser()
always use mechanize:
browser.default_driver = LIB_MECHANIZE

or always use requests:
browser.default_driver = LIB_REQUESTS

or use traversal in the same transactions with same connection:
browser.default_driver = LIB_TRAVERSAL

When using the testbrowser in a plone.testing layer, the driver can be
chosen by using a standard plone.testing fixture:

from ftw.testbrowser import MECHANIZE_BROWSER_FIXTURE
from ftw.testbrowser import REQUESTS_BROWSER_FIXTURE
from ftw.testbrowser import TRAVERSAL_BROWSER_FIXTURE
from plone.app.testing import PLONE_FIXTURE
from plone.app.testing import FunctionalTesting

MY_FUNCTIONAL_TESTING_WITH_MECHANIZE = FunctionalTesting(
 bases=(PLONE_FIXTURE,
 MECHANIZE_BROWSER_FIXTURE),
 name='functional:mechanize')

MY_FUNCTIONAL_TESTING_WITH_REQUESTS = FunctionalTesting(
 bases=(PLONE_FIXTURE,
 REQUESTS_BROWSER_FIXTURE),
 name='functional:requests')

MY_FUNCTIONAL_TESTING_WITH_TRAVERSAL = FunctionalTesting(
 bases=(PLONE_FIXTURE,
 TRAVERSAL_BROWSER_FIXTURE),
 name='functional:traversal')

Visit pages

For visiting a page, use the visit or open method on the browser (those methods
do the same).

Visiting the Plone site root:

browser.open()
print browser.url

See also

ftw.testbrowser.core.Browser.url()

Visiting a full url:

browser.open('http://nohost/plone/sitemap')

Visiting an object:

folder = portal.get('the-folder')
browser.visit(folder)

Visit a view on an object:

folder = portal.get('the-folder')
browser.visit(folder, view='folder_contents')

The open method can also be used to make POST request:

browser.open('http://nohost/plone/login_form',
 {'__ac_name': TEST_USER_NAME,
 '__ac_password': TEST_USER_PASSWORD,
 'form.submitted': 1})

See also

ftw.testbrowser.core.Browser.open()

Logging in

The login method sets the Authorization request header.

Login with the plone.app.testing default test user (TEST_USER_NAME):

browser.login().open()

Logging in with another user:

browser.login(username='john.doe', password='secret')

Logout and login a different user:

browser.login(username='john.doe', password='secret').open()
browser.reset()
browser.login().open()

See also

ftw.testbrowser.core.Browser.login(),
ftw.testbrowser.core.Browser.reset()

Finding elements

Elements can be found using CSS-Selectors (css method) or using XPath-Expressions
(xpath method). A result set (Nodes) of all matches is returned.

See also

ftw.testbrowser.nodes.Nodes()

CSS:

browser.open()
heading = browser.css('.documentFirstHeading').first
self.assertEquals('Plone Site', heading.normalized_text())

See also

ftw.testbrowser.core.Browser.css(),
ftw.testbrowser.nodes.NodeWrapper.normalized_text()

XPath:

browser.open()
heading = browser.xpath('h1').first
self.assertEquals('Plone Site', heading.normalized_text())

See also

ftw.testbrowser.core.Browser.xpath()

Finding elements by text:

browser.open()
browser.find('Sitemap').click()

The find method will look for theese elements (in this order):

	a link with this text (normalized, including subelements’ texts)

	a field which has a label with this text

	a button which has a label with this text

See also

ftw.testbrowser.core.Browser.find()

Matching text content

In HTML, most elements can contain direct text but the elements can also
contain sub-elements which also have text.

When having this HTML:

 This is
 a link

We can get only direct text of the link:

>>> browser.css('#link').first.text
'\n This is\n '

or the text recursively:

>>> browser.css('#link').first.text_content()
'\n This is\n a link\n '

See also

ftw.testbrowser.nodes.NodeWrapper.text_content()

or the normalized recursive text:

>>> browser.css('#link').first.normalized_text()
'This is a link'

See also

ftw.testbrowser.nodes.NodeWrapper.normalized_text()

Functions such as find usually use the normalized_text.

See also

ftw.testbrowser.core.Browser.find()

Get the page contents / json data

The page content of the currently loaded page is always available on the browser:

browser.open()
print browser.contents

See also

ftw.testbrowser.core.Browser.contents()

If the result is a JSON string, you can access the JSON data (converted to python
data structure already) with the json property:

browser.open(view='a-json-view')
print browser.json

See also

ftw.testbrowser.core.Browser.json()

Filling and submitting forms

The browser’s fill method helps to easily fill forms by label text without knowing
the structure and details of the form:

browser.visit(view='login_form')
browser.fill({'Login Name': TEST_USER_NAME,
 'Password': TEST_USER_PASSWORD}).submit()

The fill method returns the browser instance which can be submitted with submit.
The keys of the dict with the form data can be either field labels (<label> text) or
the name of the field. Only one form can be filled at a time.

File uploading

For uploading a file you need to pass at least the file data (string or stream) and
the filename to the fill method, optionally you can also declare a mime type.

There are two syntaxes which can be used.

Tuple syntax:

browser.fill({'File': ('Raw file data', 'file.txt', 'text/plain')})

Stream syntax

file_ = StringIO('Raw file data')
file_.filename = 'file.txt'
file_.content_type = 'text/plain'

browser.fill({'File': file_})

You can also pass in filesystem files directly, but you need to make sure that the
file stream is opened untill the form is submitted.

with open('myfile.pdf') as file_:
 browser.fill({'File': file_}).submit()

See also

ftw.testbrowser.core.Browser.fill(),
ftw.testbrowser.form.Form.submit(),
ftw.testbrowser.form.Form.save()

Tables

Tables are difficult to test without the right tools.
For making the tests easy and readable, the table components provide helpers
especially for easily extracting a table in a readable form.

For testing the content of this table:

<table id="shopping-cart">
 <thead>
 <tr>
 <th>Product</th>
 <th>Price</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Socks</td>
 <td>12.90</td>
 </tr>
 <tr>
 <td>Pants</td>
 <td>35.00</td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <td>TOTAL:</td>
 <td>47.90</td>
 </tr>
 </tfoot>
</table>

You could use the lists method:

self.assertEquals(
 [['Product', 'Price'],
 ['Socks', '12.90'],
 ['Pants', '35.00'],
 ['TOTAL:', '47.90']],
 browser.css('#shopping-cart').first.lists())

See also

ftw.testbrowser.table.Table.lists()

or the dicts method:

self.assertEquals(
 [{'Product': 'Socks',
 'Price': '12.90'},
 {'Product': 'Pants',
 'Price': '35.00'},
 {'Product': 'TOTAL:',
 'Price': '47.90'}],
 browser.css('#shopping-cart').first.dicts())

See also

ftw.testbrowser.table.Table.dicts()

See the tables API for more details.

See also

ftw.testbrowser.table.Table(),
ftw.testbrowser.table.TableRow(),
ftw.testbrowser.table.TableCell()

Page objects

ftw.testbrowser ships some basic page objects for Plone.
Page objects represent a page or a part of a page and provide an API to this part.
This allows us to write simpler and more expressive tests and makes the tests less
brittle.

Read the post by Martin Fowler [http://martinfowler.com/bliki/PageObject.html]
for better explenation about what page objects are.

You can and should write your own page objects for your views and pages.

See the API documentation for the page objects included in ftw.testbrowser:

	The plone page object provides general information about this page, such as
if the user is logged in or the view / portal type of the page.

	The factoriesmenu page object helps to add new content through the browser or
to test the addable types.

	The statusmessages page object helps to assert the current status messages.

	The dexterity page object provides helpers related to dexterity

	The z3cform page object provides helpers related to z3cforms, e.g. for asserting
validation errors in the form.

See also

ftw.testbrowser.pages

XML Support

When the response mimetype is text/xml or application/xml, the response body is
parsed as XML instead of HTML.

This can lead to problems when having XML-Documents with a default namespace,
because lxml only supports XPath 1, which does not support default namespaces.

You can either solve the problem yourself by parsing the browser.contents or you
may switch back to HTML parsing.
HTML parsing will modify your document though, it will insert a html node for example.

Re-parsing with another parser:

browser.webdav(view='something.xml') # XML document
browser.parse_as_html() # HTML document
browser.parse_as_xml() # XML document

See also

ftw.testbrowser.core.Browser.parse_as_html

See also

ftw.testbrowser.core.Browser.parse_as_xml

See also

ftw.testbrowser.core.Browser.parse

WebDAV requests

ftw.testbrowser supports doing WebDAV requests, although it requires a
ZServer to be running because of limitations in mechanize.

Use a testing layer which bases on plone.app.testing.PLONE_ZSERVER:

from plone.app.testing import FunctionalTesting
from plone.app.testing import PLONE_FIXTURE
from plone.app.testing import PLONE_ZSERVER
from plone.app.testing import PloneSandboxLayer

class MyPackageLayer(PloneSandboxLayer):

 defaultBases = (PLONE_FIXTURE,)

MY_PACKAGE_FIXTURE = MyPackageLayer()
MY_PACKAGE_ZSERVER_TESTING = FunctionalTesting(
 bases=(MY_PACKAGE_FIXTURE,
 PLONE_ZSERVER),
 name='my.package:functional:zserver')

Then use the webdav method for making requests in the test:

from ftw.testbrowser import browsing
from my.package.testing import MY_PACKAGE_ZSERVER_TESTING
from unittest2 import TestCase

class TestWebdav(TestCase):

 layer = MY_PACKAGE_ZSERVER_TESTING

 @browsing
 def test_DAV_option(self, browser):
 browser.webdav('OPTIONS')
 self.assertEquals('1,2', browser.response.headers.get('DAV'))

See also

ftw.testbrowser.core.Browser.webdav()

Error handling

The testbrowser raises exceptions by default when a request was not successful.
When the response has a status code of 4xx, a
ftw.testbrowser.exceptions.HTTPClientError is raised,
when the status code is 5xx, a
ftw.testbrowser.exceptions.HTTPServerError is raised.

Disabling HTTP exceptions

Disable the raise_http_errors flag when the test browser should not raise
any HTTP exceptions:

@browsing
def test(self, browser):
 browser.raise_http_errors = False
 browser.open(view='not-existing')

Expecting HTTP exceptions

Sometimes we want to make sure that the server responds with a certain bad
status. For making that easy, the testbrowser provides assertion context
managers:

@browsing
def test(self, browser):
 with browser.expect_http_error():
 browser.open(view='failing')

 with browser.expect_http_error(code=404):
 browser.open(view='not-existing')

 with browser.expect_http_error(reason='Bad Request'):
 browser.open(view='get-record-by-id')

Expecting unauthoirzed exceptions (Plone)

When a user is not logged in and is not authorized to access a resource,
Plone will redirect the user to the login form (require_login).
The expect_unauthorized context manager knows how Plone behaves and provides
an easy interface so that the developer does not need to handle it.

@browsing
def test(self, browser):
 with browser.expect_unauthorized():
 browser.open(view='plone_control_panel')

Exception bubbling

Exceptions happening in views can not be catched in the browser by default.
When using an internally dispatched driver such as Mechanize,
the option exception_bubbling makes the Zope Publisher and Mechanize
let the exceptions bubble up into the test method, so that it can be catched
and asserted there.

@browsing
def test(self, browser):
 browser.exception_bubbling = True
 with self.assertRaises(ValueError) as cm:
 browser.open(view='failing')

 self.assertEquals('No valid value was submitted', str(cm.exception))

API Documentation

	Browser
	Drivers
	RequestsDriver

	MechanizeDriver

	TraversalDriver

	StaticDriver

	Nodes and forms
	Result set

	Node wrappers

	Forms, fields and widgets

	Tables

	Page objects
	Plone page object

	Factories menu page object

	Status messages page object

	dexterity page object

	z3cform page object

	Exceptions

Browser

	Drivers
	RequestsDriver

	MechanizeDriver

	TraversalDriver

	StaticDriver

Drivers

Drivers are responsible for making the request and responding to basic
questions, such as the current URL or response headers.

RequestsDriver

MechanizeDriver

TraversalDriver

StaticDriver

Nodes and forms

	Result set

	Node wrappers

	Forms, fields and widgets

	Tables

Result set

Node wrappers

Node wrappers wrap the standard lxml elements and extend them with some useful
methods so that it is nicely integrated in the ftw.testbrowser behavior.

Forms, fields and widgets

Tables

Page objects

	Plone page object

	Factories menu page object

	Status messages page object

	dexterity page object

	z3cform page object

Plone page object

Factories menu page object

Status messages page object

dexterity page object

z3cform page object

Exceptions

Changelog

1.24.0 (2017-06-16)

	Log exceptions to stderr when they are not expected. [jone]

	Standardize redirect loop detection: always throw a RedirectLoopException. [jone]

	Add traversal request driver. [jone]

1.23.2 (2017-06-16)

	Fix browser.context when base_url ends with a view name. [phgross]

1.23.1 (2017-05-02)

	Fix browser.debug when body is a bytestring. [jone]

1.23.0 (2017-04-28)

	Introduce browser.expect_unauthorized context manager. [jone]

1.22.2 (2017-04-28)

	HTTPError: include code and reason in exception. [jone]

	Docs: Fix wrong expect_http_error argument names. [jone]

1.22.1 (2017-04-28)

	Docs: swith to RTD, update URLs. [jone]

	Docs: Switch to RTD Sphinx theme. [lgraf]

1.22.0 (2017-04-28)

	Forbid setting of “x-zope-handle-errors” header. [jone]

	Add an option browser.exception_bubbling, disabled by default. [jone]

	Mechanize: no longer disable “x-zope-handle-errors”. [jone]

	Introduce browser.expect_http_error() context manager. [jone]

	Add an option browser.raise_http_errors, enabled by default. [jone]

	Raise HTTPClientError and HTTPServerError by default. [jone]

	Introduce browser.status_reason. [jone]

	Introduce browser.status_code. [jone]

1.21.0 (2017-04-19)

	Make zope.globalrequest support optional. [jone]

	Add testing layers for setting the default driver. [jone]

	Add default_driver option to the driver. [jone]

	Refactoring: introduce request drivers. [jone]

1.20.0 (2017-04-10)

	Add Support for Button tag. [tschanzt]

	No longer test with Archetypes, test only with dexterity. [jone]

	Support latest Plone 4.3.x release. [mathias.leimgruber]

1.19.3 (2016-07-25)

	Declare some previously missing test requirements.
[lgraf]

	Declare previously missing dependency on zope.globalrequest (introduced in #35).
[lgraf]

1.19.2 (2016-06-27)

	Preserve the request of zope.globalrequest when opening pages with
mechanize.
[deiferni]

	Also provide advice for available options in exception message.
[lgraf]

1.19.1 (2015-08-20)

	Preserve radio-button input when filling forms with radio buttons.
[deiferni]

1.19.0 (2015-07-31)

	Implement browser.click_on(tex) short cut for clicking links.
[jone]

	Fix encoding error in assertion message when selecting a missing select
option.
[mbaechtold]

1.18.1 (2015-07-23)

	Fix GET form submission to actually submit it with GET.
[jone]

1.18.0 (2015-07-22)

	Table: add new ”.column” method for getting all cells of a column.
[jone]

1.17.0 (2015-07-22)

	Add support for filling collective.z3cform.datagridfield.
[jone, mbaechtold]

1.16.1 (2015-07-13)

	Autocomplete widget: extract URL from javascript.
[jone]

1.16.0 (2015-07-08)

	Add image upload widget support (archetypes and dexterity).
[jone]

1.15.0 (2015-05-07)

	Parse XML responses with XML parser instead of HTML parser.
New methods for parsing the response: parse_as_html,
parse_as_xml and parse.
[jone]

	Add browser properties contenttype, mimetype and encoding.
[jone]

1.14.6 (2015-04-17)

	Use cssselect in favor of lxml.cssselect.
This allows us to use lxml >= 3.
[jone]

	Added tests for z3c date fields.
[phgross]

1.14.5 (2015-01-30)

	AutocompleteWidget: Drop query string from base URL when building query URL.
[lgraf]

1.14.4 (2014-10-03)

	Widgets: test for sequence widget after testing for autocomplete widgets.
Some widgets match both, autocomplete and sequence widgets.
In this case we want to have the autocomplete widget.
[jone]

1.14.3 (2014-10-02)

	Fix error with textarea tags without id-attributes.
[jone]

1.14.2 (2014-09-29)

	Fix an issue with relative urls.
[jone, deiferni]

1.14.1 (2014-09-26)

	Set the HTTP REFERER header correctly.
[jone]

1.14.0 (2014-09-26)

	Add folder_contents page object.
[jone]

	Update table methods with keyword arguments:

	head_offset: used for stripping rows from the header

	as_text: set to False for getting cell nodes

[jone]

1.13.4 (2014-09-22)

	Filling selects: verbose error message when option not found.
The available options are now included in the message.
[jone]

1.13.3 (2014-09-02)

	Node.text: remove multiple spaces in a row caused by nesting.
[jone]

1.13.2 (2014-08-06)

	Fix problems when filling forms which have checked checkedbox.
[phgross]

1.13.1 (2014-07-15)

	Fix encoding problem on binary file uploads.
[jone]

1.13.0 (2014-06-12)

	Add a Dexterity namedfile upload widget.
[lgraf]

1.12.4 (2014-05-30)

	Fix python 2.6 support.
[jone]

1.12.3 (2014-05-30)

	Fix z3cform choice collection widget to support Plone < 4.3.
[jone]

1.12.2 (2014-05-29)

	Fix z3cform choice collection widget submit value.
The widget creates hidden input fields on submit.
[jone]

1.12.1 (2014-05-29)

	Fix error in z3cform choice collection widget when using paths.
[jone]

1.12.0 (2014-05-29)

	Add a z3cform choice collection widget.
This is used for z3cform List fields with Choice value_type.
[jone]

	Add select field node wrapper with methods for getting available options.
[jone]

1.11.4 (2014-05-22)

	browser.open(data): support multiple values for the same data name.
The values can either be passed as a dict with lists as values or as
a sequence of two-element tuples.
[jone]

1.11.3 (2014-05-19)

	Fix browser.url regression when the previous request raised an exception.
[jone]

1.11.2 (2014-05-17)

	Make NoElementFound exception message more verbose.
When a .first on an empty result set raises a NoElementFound
exception, the exception message now includes the original query.
[jone]

1.11.1 (2014-05-17)

	Fix browser cloning regression in autocomplete widget “query”.
The cloned browser did no longer have the same headers / cookies,
causing authenticated access to be no longer possible.
[jone]

	New browser.clone method for creating browser clones.
[jone]

	Update standard page objects to accept browser instace as keyword arguments.
This makes it possible to use the page objects with non-standard browsers.
[jone]

1.11.0 (2014-05-14)

	New browser.base_url property, respecting the <base> tag.
[jone]

	New browser.debug method, opening the current page in your real browser.
[jone]

	New browser.on method, a lazy variant of browser.open.
[jone]

	New browser.reload method, reloading the current page.
[jone]

	Improve requests library support:

	Support choosing requests library, make Zope app setup optional.
When no Zope app is set up, the requests library is set as default,
otherwise mechanize.

	Support form submitting with requests library.

	Improve login and header support for equests library requests.

	Add browser.cookies support for requests library requests.

	Use requests library sessions, so that cookies and headers persist.

	Automatically use “POST” when data is submitted.

[jone]

	Login improvements:

	Support passing member objects to browser.login().
The users / members are still expected to hav TEST_USER_PASSWORD as password.

	Refactor login to use the new request header methods.

[jone]

	Add request header methods for managing permanent request headers:

	browser.append_request_header

	browser.replace_request_header

	browser.clear_request_header

[jone]

	Refactor Form: eliminate class methods and do not use the global browser.
This improves form support when running multiple browser instances concurrently.

	Form.field_labels (class method) is now a instance property and public API.

	Form.find_widget_in_form (class method) is removed and replaced with
Form.find_widget (instance method).

	Form.find_field_in_form (class method) is removed and replaced
Form.get_field (instance method).

	Form.find_form_element_by_label_or_name (class method) is removed and replaced
with browser.find_form_by_field.

	Form.find_form_by_labels_or_names (class method) is removed and replaced with
browser.find_form_by_fields.

	New Form.action_url property with the full qualified action URL.

	Fix form action URL bug when using relative paths in combination with
document-style base url.

[jone]

	Fix wrapping input.label - this did only work for a part of field types.
[jone]

	Fix UnicodeDecodeError in node string representation.
[mathias.leimgruber]

1.10.0 (2014-03-19)

	Add NodeWrapper-properties:

	innerHTML

	normalized_innerHTML

	outerHTML

	normalized_outerHTML

[jone, elioschmutz]

1.9.0 (2014-03-18)

	Add support for filling AT MultiSelectionWidget.
[jone]

1.8.0 (2014-03-04)

	Add a context property to the browser with the current
context (Plone object) of the currently viewed page.
[jone]

1.7.3 (2014-02-28)

	Fix encoding problem in factories menu page object.
The problem occured when having a “Restrictions...” entry in the menu.
[jone]

1.7.2 (2014-02-25)

	Form: Support checking checkboxes without a value.
Checkboxes without a value attribute are invalid but common.
The default browser behavior is to fallback to the value “on”.
[jone]

1.7.0 (2014-02-03)

	ContentTreeWidget: support filling objects as values.
[jone]

1.6.1 (2014-01-31)

	Implement logout on browser, logout before each login.
[jone]

1.6.0 (2014-01-29)

	Add cookies property to the browser.
[jone]

1.5.3 (2014-01-28)

	Fix multiple wrapping on browser.forms.
[jone]

1.5.2 (2014-01-17)

	Implement archetypes datetime widget form filling.
[jone]

1.5.1 (2014-01-07)

	Fix encoding problems when posting unicode data directly with Browser.open.
[jone]

	Support form filling with bytestrings.
[jone]

	Fix form filling with umlauts.
[jone]

	Fix form fill for single select fields.
[jone]

1.5.0 (2014-01-03)

	Implement AT file upload widget, because the label does not work.
[jone]

	Implement file uploads.
[jone]

	Add “headers” property on the browser.
[jone]

1.4.0 (2013-12-27)

	Deprecate normalized_text method, replace it with text property.
The text property is more intuitive and easier to remember.
The text property has almost the same result as normalized_text,
but it represents
 and <p> with single and double newlines respectively.
text is to be the lxml text property, which contained the raw, non-recursive
text of the current node and is now available as raw_text property.
[jone]

	open_html: make debugging file contain passed HTML.
[jone]

	Sequence widget: implement custom form filling with label support and validation.
[jone]

	Sequence widget: add additional properties with inputs and options.
[jone]

1.3.0 (2013-12-11)

	Implement “query” method on autocomplete widget.
[jone]

	Implement form fill for z3cform datetime widget.
[jone]

	Fix setting attributes on nodes when wrapped with NodeWrapper.
[jone]

	Implement form fill for z3cform autocomplete widgets.
[jone]

	Implement form fill for z3cform sequence widgets.
[jone]

	Add webdav method for doing WebDAV requests with a ZServer.
[jone]

1.2.0 (2013-11-24)

	Add open_html method to browser object, allowing to pass in HTML directly.
[jone]

1.1.0 (2013-11-07)

	Add dexterity page object, refactor z3cform page object.
[jone]

	Add table nodes with helpers for table testing.
[jone]

	Merging “Nodes” lists returns a new “Nodes” list, not a “list”.
[jone]

	Show containing elements in string representation of “Nodes” list.
[jone]

	Fix direct child selection with CSS (node.css(“>tag”)).
[jone]

	Add a recursive option to normalized_text.
[jone]

1.0.2 (2013-10-31)

	When normalizing whitespaces, do also replace non-breaking spaces.
[jone]

1.0.1 (2013-10-31)

	Add first_or_none property to Nodes.
[jone]

1.0.0 (2013-10-28)

	Initial implementation.
[jone]

Index

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

nav.xhtml

 Table of Contents

 		ftw.testbrowser

 		Introduction

 		Features

 		Motivation

 		How it works

 		Quickstart

 		User documentation

 		Setup

 		Choosing the default driver

 		Visit pages

 		Logging in

 		Finding elements

 		Matching text content

 		Get the page contents / json data

 		Filling and submitting forms

 		File uploading

 		Tables

 		Page objects

 		XML Support

 		WebDAV requests

 		Error handling

 		Disabling HTTP exceptions

 		Expecting HTTP exceptions

 		Expecting unauthoirzed exceptions (Plone)

 		Exception bubbling

 		API Documentation

 		Browser

 		Drivers

 		Nodes and forms

 		Result set

 		Node wrappers

 		Forms, fields and widgets

 		Tables

 		Page objects

 		Plone page object

 		Factories menu page object

 		Status messages page object

 		dexterity page object

 		z3cform page object

 		Exceptions

 		Changelog

 		1.24.0 (2017-06-16)

 		1.23.2 (2017-06-16)

 		1.23.1 (2017-05-02)

 		1.23.0 (2017-04-28)

 		1.22.2 (2017-04-28)

 		1.22.1 (2017-04-28)

 		1.22.0 (2017-04-28)

 		1.21.0 (2017-04-19)

 		1.20.0 (2017-04-10)

 		1.19.3 (2016-07-25)

 		1.19.2 (2016-06-27)

 		1.19.1 (2015-08-20)

 		1.19.0 (2015-07-31)

 		1.18.1 (2015-07-23)

 		1.18.0 (2015-07-22)

 		1.17.0 (2015-07-22)

 		1.16.1 (2015-07-13)

 		1.16.0 (2015-07-08)

 		1.15.0 (2015-05-07)

 		1.14.6 (2015-04-17)

 		1.14.5 (2015-01-30)

 		1.14.4 (2014-10-03)

 		1.14.3 (2014-10-02)

 		1.14.2 (2014-09-29)

 		1.14.1 (2014-09-26)

 		1.14.0 (2014-09-26)

 		1.13.4 (2014-09-22)

 		1.13.3 (2014-09-02)

 		1.13.2 (2014-08-06)

 		1.13.1 (2014-07-15)

 		1.13.0 (2014-06-12)

 		1.12.4 (2014-05-30)

 		1.12.3 (2014-05-30)

 		1.12.2 (2014-05-29)

 		1.12.1 (2014-05-29)

 		1.12.0 (2014-05-29)

 		1.11.4 (2014-05-22)

 		1.11.3 (2014-05-19)

 		1.11.2 (2014-05-17)

 		1.11.1 (2014-05-17)

 		1.11.0 (2014-05-14)

 		1.10.0 (2014-03-19)

 		1.9.0 (2014-03-18)

 		1.8.0 (2014-03-04)

 		1.7.3 (2014-02-28)

 		1.7.2 (2014-02-25)

 		1.7.0 (2014-02-03)

 		1.6.1 (2014-01-31)

 		1.6.0 (2014-01-29)

 		1.5.3 (2014-01-28)

 		1.5.2 (2014-01-17)

 		1.5.1 (2014-01-07)

 		1.5.0 (2014-01-03)

 		1.4.0 (2013-12-27)

 		1.3.0 (2013-12-11)

 		1.2.0 (2013-11-24)

 		1.1.0 (2013-11-07)

 		1.0.2 (2013-10-31)

 		1.0.1 (2013-10-31)

 		1.0.0 (2013-10-28)

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

